►Concentration of substances is different in ECF and ICF
►This difference is essential for survival
►Cell membrane ensures concentration difference between ECF & ICF
►Cell membrane is a selectively permeable barrier between ICF and ECF
Modes of transport
►Passive transport (diffusion)
►Active transport
►Vesicular transport
Passive transport (diffusion)
►Transport of molecules from high to low concentration due to their kinetic movement without using energy
Types
►Simple diffusion
►Facilitated diffusion
►Simple diffusion -net diffusion of molecules through cell membrane without using carrier proteins
►Through interstices of lipid bilayer
►Lipid soluble substances (non polar)
►O2 , CO2 , N2 , Fatty acids, steroid hormones
►Through protein channels
►Water & water soluble substances (polar)
►Urea, ions (Na+, K+, Ca++)
►Rate of diffusion increases in direct proportion with the concentration difference
►Attributes of protein channels
►Selective permeability
►Size of the channel
►Charge on the channel
►Gating
►Voltage gating
►Chemical gating (ligand gating)
►Facilitated diffusion -diffusion of molecules through cell membrane with help of carrier proteins (carrier mediated diffusion)
►Follows maximum rate of diffusion (Vmax)
►Due to dependence upon carrier protein
►Attributes of carrier proteins
►Specificity
►Presence of receptors
►Saturation
►Vmax
►Facilitated diffusion
►Glucose
►Insulin increases number of carrier proteins (transporters) for glucose
►Amino acids
►Factors affecting net diffusion
►Concentration difference
►Temperature
►Surface area
►Mass of diffusing substance
►Diffusion distance
►Pressure difference
►Membrane electrical potential
Osmosis
►Net simple diffusion of water across a semi-permeable membrane
►Occurs at
►Cell membranes
►Capillary membranes
Osmotic pressure
►Pressure required to stop osmosis
►More concentrated a solution the more osmotic pressure it will exert
Osmoles
-number of osmotically active particles in a solution
►One osmole is equal to one mole of a non dissociated molecule
►1 mole of glucose=1 osmole
►1 mole of NaCl =2 osmoles
►1 mole of Na2SO4= 3 osmoles
Osmolarity
►Osmoles per liter of solution
►ECF osmolarity (mainly due to Na+)
►281 mOsm/L
►Why to regulate ECF osmolarity?
►To maintain osmotic equilibrium between ICF & ECF
►Important for cell survival
►Hyperosmolar coma (diabetes mellitus)
Active transport
►Movement of substances againstconcentration gradient using energy with the help of carrier proteins
►Types (on the basis how energy is derived)
1) Primary active transport
►Energy derived directly by cleaving ATP
2) Secondary active transport
►Energy derived by concentration gradient
Primary active transport
►Active transport of a molecule by directly cleaving ATP for the use of energy
►Carrier proteins involved
►Called pumps
►Have ATPase activity
►Can break ATP to release energy
►Examples
►Na+, K+, Ca++, H+, I–
Sodium-potassium ATPase pump
►A carrier protein
►Present in all the cells
►A complex of 2 globular proteins
►Possesses ATPase activity on inside
►3 receptors for Na+on inside
►2 receptors for K+on outside
►Pumps 3 Na+outwards for 2 K+inwards
Functions:
►To establish Na+& K+concentration gradients between ICF and ECF
►Development of electrical potential across cell membrane
►Cell volume regulation
►Ca++ATPase pump
►Pumps Ca++out
Located at
►Cell membrane
►Intracellular membranes (sarcoplasmic reticulum of muscle cells)
►H+ATPase pump
►Pumps H+out of the cells
Located at
►Cell membranes of
►Tubular cells (intercalated cells) of late distal tubules of kidney
►Parietal cells of stomach
Secondary active transport
►Active transport of a molecule by using energy stored in the form of concentration gradient of some other molecule
►Mediated by carrier proteins
►Carrier proteins do not have ATPase activity
►ATP can not be cleaved to liberate energy
►Na+is generally utilized for secondary active transport of other molecules
►Na+concentration gradient is established in first place by primary active transport
►Na+while moving downhill into the cell moves other molecules uphill
►Types
1)Co-transport (symport)
►Na+ and molecule to be transported move in the same direction (into the cell)
2)Counter transport (antiport)
►Na+and molecule to be transported move in opposite direction (Na+always inwards)
►Co-transport
►Na+ -glucose co-transport
►Renal proximal tubular cells
►Na+ -amino acids co-transport
►Renal proximal tubular cells
►Counter transport
►Na+ -Ca++counter transport
►In all the cells
►Na+ -H+counter transport
►Renal proximal tubular cells
Vesicular transport
►Movements of substances across cell membrane in vesicles using energy
►Large molecules are transported
►Types
►Endocytosis
►Phagocytosis
►Pinocytosis
►Exocytosis
►Transcytosis
►Pinocytosis
►‘Cell drinking’
►Macromolecules, ECF fluid and solutes
►Cell membrane invaginates → pinocytic vesicle
►Phagocytosis
►‘Cell eating’
►Large particles, bacteria, dead cells
►Function of tissue macrophages and white blood cells
►Cell membrane evaginates by pseudopodia → phagocytic vesicle
►Exocytosis
►Reversal of endocytosis
Transcytosis
►Movement of materials from one side of the cell to other using vesicular transport
►No contact of vesicle with lysosomes
►First endocytosis and then exocytosis
►Transfer of proteins through capillary endothelial cells
Love the blog here. Nice colors. I am definitely staying tuned to this one. Hope to see more.